MOTHER TERESA WOMEN'S UNIVERSITY

KODAIKANAL

DEPARTMENT OF MATHEMATICS

B.Sc. MATHEMATICS PROGRAMME

SYLLABI

WITH EFFECT FROM THE ACADEMIC YEAR
2018-2019 Onwards

ALLOCATION OF PAPERS AND CREDITS(SEMESTER-WISE) FOR UG
 PROGRAMMES AS PER THE TANSCHE RULES
 MATHEMATICS
 UG Course Structure under Choice Based Credit System (CBCS) with effect from 2018-2019 onwards

$\begin{gathered} \text { P. } \\ \text { No. } \end{gathered}$	Paper Code	Course Title	Hours	Credits	Continuous Internal Assessment (CIS)	End Semester Exam (ESE)	Total
Semester I							
1.	ULTA11	Part-I- Tamil	6	3	25	75	100
2.	ULEN11	Part-II-English	6	3	25	75	100
3.	UMTT11	Core I - Calculus	5	4	25	75	100
4.	UMTT12	Core II- Classical Algebra	5	4	25	75	100
5.	UMTA11	Allied Theory I - Ancillary Physics-I	5	4	25	75	100
6.	UVAE11	Value Education	3	3	25	75	100
		Total	30	21			600
Semester II							
7.	ULTA22	Part I-Tamil	6	3	25	75	100
8.	ULEN22	Part II-English	6	3	25	75	100
9.	UMTT21	Core III -Analtical Geometry 3D	6	4	25	75	100
10.	UMTT22	Core IV - Differential Equations and Laplace Transforms	5	4	25	75	100
11.	UMTA21	Allied Theory/Practical IAncillary Physics-II	5	4	25	75	100
12.	UEVS21	Environmental Studies	2	2	25	75	100
		Total	30	20			600
Semester III							
13.	ULTA33	Part I-Tamil	6	3	25	75	100
14.	ULEN33	Part II- English	6	3	25	75	100
15.	UMTT31	Core V- Statics	5	4	25	75	100
16.	UMTA32	Allied II - Ancillary Mathematical Statistics-I	5	4	25	75	100
17.	UMTE31	Elective I - Vector Calculus , Fourier Series and Fourier Transform	4	3	25	75	100
18.	UMTN31	Non Major Elective Course IResource Management Techniques	2	2	25	75	100
19.	UMTS31	Skill Based Studies I: Astronomy -I	2	2	25	75	100
		Total	30	21			700

Semester IV							
20.	ULTA44	Part I-Tamil	6	3	25	75	100
21.	ULEN44	Part II-English	6	3	25	75	100
22.	UMTT41	Core VI - Dynamics	4	4	25	75	100
23.	UMTT42	Core VII- Sequence and Series	4	4	25	75	100
24.	UMTA42	Allied Practical II- Ancillary Mathematical Statistics -II	3	4	25	75	100
25.	UMTE42	Elective II - Discrete Mathematics	3	3	25	75	100
26.	UMTN42	Non Major Elective course II Mathematical Aptitude	2	2	25	75	100
27.	UMTS42	Skill Based Studies II - Astronomy -II	2	2	25	75	100
		Total	30	25			800
Semester V							
28.	UMTT51	Core VIII- Abstract Algebra	5	4	25	75	100
29.	UMTT52	Core IX - Real Analysis	5	4	25	75	100
30.	UMTT53	Core X - Operations Research - I	5	4	25	75	100
31.	UMTT54	Core XI - Number Theory	5	4	25	75	100
32.	UMTT55	Core XII - Numerical Methods	5	4	25	75	100
33.	UMTE53	Elective III - Programming in C	3	3	25	75	100
34.	UMTS53	Skill Based Studies III Mathematical Methods	2	2	25	75	100
		Total	30	25			700
Semester VI							
35.	UMTT61	Core XIII - Linear Algebra	5	4	25	75	100
36.	UMTT62	Core XIV - Complex Analysis	5	4	25	75	100
37.	UMTT63	Core XV - Operations Research-II	5	4	25	75	100
38.	UMTT64	Core XVI- Graph Theory	5	4	25	75	100
39.	UMTT65	Core XVII- Fuzzy Sets and Fuzzy Numbers	5	4	25	75	100
40.	UMTE64	Elective IV - Programming in C^{++}	3	3	25	75	100
41.	UMTS64	Skill Based Studies IV: Numerical Methods Lab using C ${ }^{++}$	2	2	25	75	100
42.	UEAS61	Extension Activity	-	3	25	75	100
		Total	30	28			800
		Total credits		140		Total	4200

SCHEME OF EXAMINATION

Internal (Theory)	$\mathbf{- 2 5}$
Test	-15
Attendance	-5
Assignment/Technical Quiz	-5
Total	$\mathbf{- 2 5}$
External (Theory)	$\mathbf{- 7 5}$

QUESTION PATTERN

1.	$10^{*} 1$ Marks (Objective type / Multiple choice 2 Question from each unit)	10
2.	$5 * 4$ Marks (from each unit either or choice)	20
3.	$3^{*} 15$ Marks (Open choice Any Three Questions out of 5, one question from each unit)	45
Total	75	

The Internal Assessment for Practical : 25
The External Assessment for Practical : 75

Semester I

UMTT11
CALCULUS
5 Hours / 4 Credits
Objectives

- To learn the different concepts of differential and integral calculus.
- To learn will acquire basic knowledge of integration
- To learn will become proficient in multiple integrals and its applications
- The learner will gain concepts of change of variables

Unit I: Successive differentiation- Expansion of function - Leibnitz Theorem and its application Maxima and Minima of Function of two variables.

Unit II: Curvature - Radius of Curvature and Center of Curvature in Cartesian Form and Polar Form p-r equation; Pedal Equation of a Curve - Chord of a Curvature.

Unit III: Double Integral : Definition - Evaluation of double integral - Double integral in polar Co- ordinates.

Unit IV: Triple Integral:Definition - Applications of multiple integrals -Change of variables in the case two variables - Change of variables in the case three variables.

Unit V: Beta and Gamma functions : Definitions - Covergence of $\Gamma(\mathrm{n})$ - Recurrence formula of Gamma functions - Properties of Beta functions - Relation between Beta and Gamma functions - Applications of Gamma functions to multiple Integrals.

Text Book:

S.Narayanan and T.K.Manickachagam Pillai - "Calculus-Volume I \& II"- Viswanathan Printers and Publishers - 2011.

Unit I - Calculus - Volume I : Chapter 3 and Chapter 8-Sec 4,
Unit II - Calculus - Volume I : Chapter 10.2.1 to 3.1
Unit III - Calculus - Volume I : Chapter 5- Sec. 1 to 3.2
Unit IV - Calculus - Volume II : Chapter 5- Sec. 4 to 5.4 and Chapter 6
Unit V - Calculus - Volume II : Chapter 7 - Sec. 2.1 to 6

Reference Books:

1. P.Kandasamy and K.Thilagavathi - "Mathematics for Branch I: Vol I and Vol II"S.Chand and Company Ltd., - New Delhi - 2004.
2. Arumugam Issac - " Calculus " - New Gamma Publishing House - Jan 2011.

Semester I

Objectives

- To impart skills in the various applications of algebraic methods.
- The learner will become proficient in expansion and summation of function.
- Understanding relation between roots and coefficients of equations, sign changes, reciprocals.
- To understand terms of series, summation and its changes

Unit I : Binomial theorem - Greatest term in the expansion of $(1+x)^{n}$.- sum of the coefficients - Multinomial theorem - Binomial theorem for rational index - Particular cases Summation of binomial series - Approximate values.

Unit II: Exponential limit - Exponential theorem - Summation - Logarithmic series Modification - Euler's constant - Logarithms of Complex Numbers.

Unit III: Summation of series - Application of partial fraction- Summation by difference series - Recuring series - Gernerating function.

Unit IV: Theory of Equations: Remainder Theorem - Relation between roots and coefficients of equations Symmetric Function of Roots - Newton's Theorem on the sum of the powers of the roots. Transformations of Equations: Roots with signs changes - Reciprocal roots.

Unit V:Reciprocal Equation - Solutionsof Numerical Equations: Solutionsof Numerical Equations - Newton's methods of divisors - Horner's method.

Text Book:

T.K.Manickachagam Pillai and others, - "Algebra Volume I", - S. Viswanathan Printers \& Publisher Pvt, Ltd., - 2010.

Unit - I - Algebra Volume I - Chapter 3
Unit - II - Algebra Volume I - Chapter 4
Unit - III - Algebra Volume I - Chapter 5
Unit - IV - Algebra Volume I - Chapter 6 - Section 1 to 15.2
Unit - V - Algebra Volume I - Chapter 6 - Section 15.3 to 30

Reference Book :

P. Kandasamy and K.Thilagavathy, - " Mathematics, Volume I - S.Chand and Company Ltd., New Delhi - 2004.

Semester II

- This is used to model geometric objects - points, (straight) lines, and circles being the most basic of these.
- To acquire knowledge of planes and its properties as a 3 dimensional objects.
- To understand the concepts skew lines and spheres.
- solving problems related to geometry of three dimension.

Unit I: Rectangular cartesian coordinates :Dirction cosines of the line -Angle between the lines - Projections - Direction cosines.

Unit II: The Plane - General equation - Angle between planes - Eqation of plane through the intersection of two given planes -Length of the perpendicular.

Unit III: Stright line - Symmetric form - Equation of Plane and straight line - Shortest distance between two given lines. (CIS)

Unit IV: Sphere - General equation - Length of the tangent - Plane section of a sphere Equation of circle on sphere - Intersection of two spheres - Equation of the tangent plane to the sphere.

Unit V: Equation of a Cone with its vertex at the origin - equation of a quadratic cone with given vertex and given guiding curve - necessary condition for general equation of second degree to represent a cone - circular cone - equation of circular cone with given vertex - axis and semi vertical angle - Cylender - Equation - Enveloping cylinder.

Text Book:

T.K.Manickavachagom Pillay and T.Natarajan, "A Text Book of Analytical Geometry - part II - Three dimensions", Viswanathan Printers and Publishers - 2011.

Unit I - Chapter 1
Unit II - Chapter 2
Unit III - Chapter 3
Unit IV - Chapter 4
Unit V - Chapter 5 - Sec. 1 to 8

Reference Books:

1. H.K.Dasse, H.C.Saxena and M.D.Raisinghania, "Simplified Course in Solid Geometry(3D)" - S.Chand and Company.
2. P.Duraipandian, "Analytical Geomentry - 3 Dimensional "- Emerald publishers - 1998

Semester II

UMTT22 DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

5 Hours / 4 Credits

Objectives

- To introduce the basic concepts of differential equations and Laplace Transforms.
- Understand the basic concepts of first order differential equation and it applications.
- Determine solutions to second order linear homogeneous, non-homogeneous differential equations with constant coefficients.
- Find solutions by applying Laplace transform methods.
- Understand the elementary theory of partial differential equations, and solve it using various techniques.

Unit I : Differential Equations of the first order and first degree : Variable separable Homogeneous, non - homogeneous, Linear equation, Bernoulli's equations, Exact differential equations. Equation of the first order and higher degree : Equations Solvable for $\mathrm{dy} / \mathrm{dx}-$ equations solvable for y - equations solvable for x - Clairaut's form.
Unit II : Linear equations with constant Co - efficient : Definition - complementary function of a Linear equation with constant Co - efficient - particular Integral - General method of finding P.I - special methods for finding P.I of the functions of the type $e^{a x}, \cos a x$ or $\sin a x, e^{a x}$ V where V is any function of x, x^{m} - Linear equations with Variable Co - efficient, Equations reducible to the linear equations.
Unit III : Simultaneous Differential equations: Simultaneous equations of the first order and first degree - Simultaneous linear differential equations: Linear equations of the second order : Complete solution given a known integral - Reduction to the normal form - Change of Independent Variables - Variation of Parameters - Methods of operations factors.
Unit IV : Formation of PDE - Lagrange method of solving linear PDE - Solution of PDE of type $F(p, q)=0, F(z, p, q)=0, F(x, p)=G(y, q)$, Clairaut's form and Charpit's method.
Unit $\quad V$: Laplace Transforms : Definition, laplace transform of periodic functions - Some general theorems - The inverse Transform's.

Text Book:

S. Narayanan and T.K. Manickavachagam pillai," Differential equations and its applications" S. Viswanathan Printers and Publishers Pvt. Ltd., Madras 2014.

Unit I - Chapter 2 and $4 . \quad$ Unit II - Chapter 5 - Sec. 1 to 6.
Unit III- Chapter 6 and $8 . \quad$ Unit IV-Chapter 12 Sec. 1 to 5.4 and 6.
Unit V- Chapter 9 - Sec. 1to 7.

Reference Books:

1. Arumugam and Isaac - Differential equations and applications, - New gamma publishing house - 1999.
2. P.Kandasamy and K. Thilagavathi "Mathematics for Branch I: Volume III" S. Chand andCompany Ltd., New Delhi - 2004.

Semester III

UMTT31
Objectives

STATICS
5 Hours / 4 Credits

- To learn the application of geometric properties in equilibrium and motion of particles.
- To learn know to apply geometrical concepts in parallel forces, moments and couples
- Proficient in static equilibrium's three forces acting on a rigid body and friction.
- The learner to understand real time application.

Unit I: Forces acting at a point : Resultant and Components- Parallelogram of ForcesAnalytical expression for the Resultant of two forces acting at a point - Triangle of Forces Perpendicular Triangle of Forces - Converse of the Triangle of Forces- The Polygon of Forces Lami's Theorem - An extended form of the parallelogram law of Forces- Resolution of a Force - Components of a Force along two given directions -Theorem on Resolved parts.

Unit II: Resultant of any number of Coplanar Forces Acting at a Point: Analytical Method Conditions of Equilibrium of any Number of forces Acting upon a Particle - Geometrical or Graphical Conditions - Analytical Conditions. Parallel Forces and Moments: To find the Resultant of Two like parallel forces acting on a rigid body- To find the Resultant of Two unlike and unequal parallel forces acting on a rigid body - Resultant of a Number of Parallel Forces Acting on a rigid Body - conditions of Equilibrium of Three Coplanar Parallel Forces Centre of two Parallel Forces - Moment of a Force - Physical Significance of the Moment of a Force - Geometrical Representation of a Moment - Sign of a Moment.

Unit III: Unit of Moment - Varigon's theorem of moments - Generalised Theorem of Moments (Principle of Moments)- Moment of a Force a about an axis. Couples: Definition Equilibrium of two couples - Equivalence of two Couples- Couples in Parallel Planes Resultant of Coplanar Couples - Resultant of a Couple and a Force.

Unit IV: Equilibrium of Three forces Acting on a Rigid Body: Rigid Body subjected to any Three Forces - Three Coplanar Forces - Conditions of Equilibrium- Procedure to be followed in solving any Statical Problem - Two Trigonometrical Theorems - Coplanar Forces: Introduction - Reduction of any number of Coplanar forces - analytical Proof of theorem - Conditions for a system of forces to Reduce to a single force or to a Couple.

Unit V: Friction: Introduction - Experimental Results - Statical, Dynamical and Limiting Friction - Law of Friction - Friction-a Passive force - coefficients of Friction - Angle of Friction - Cone of Friction - Numerical Analysis - Equilibrium of a particular on a rough
inclined plane - Equilibrium of a body on a rough inclined plane under a force parallel to the plane - Equilibrium of a body on a rough inclined plane under any force.
Text Book:
M.K.Venkatraman, 'Statics', $12^{\text {th }}$ edn, Agasthiar Publications, Trichy,2010.

Unit I - Chapter $2-$ Sec. 1 to 13.
Unit II - Chapter $2-\operatorname{Sec} 15,16$ and Chapter $3-\operatorname{Sec} 1$ to 10.
Unit III- Chapter 3 - Sec. 11 to 14 and Chapter 4.
Unit IV - Chapter 5 and Chapter 6 - Sec. 1 to 5.
Unit V - Chapter 7.

Reference Books:

1. A.V.Dharmapadam, 'Statics', S Viswanathan Printers and Publishing Pvt.,Ltd. 1993
2. P.Duraipandian and Lakshmi Duraipandian, 'Mechanics', S.Chand and Company Ltd,New Delhi - 1985.
3. Dr.P.P.Gupta, 'Statics', Kedal Nath Ram Nath, Meerut, 1983-1984.

Semester III

Unit I : Measures of Dispersion: Dispersion - range, quartile deviation - mean deviation standard deviation - root mean square deviation - Relation between standard deviation and root mean square deviation - effect of change of origin and scale on moments - Karl pearson's beta and gamma co-coefficient - measures of Skewness - Kurtosis.

Unit II Theory of Probability : Definition of various terms - Law of addition of probabilities for two events - statement of general law of addition of probabilities - Bayes Theorem.
Unit III Continuous random variables : Probability density function - various measures of central tendency, dispersion, Skewness and Kurtosis for continuous probability distribution.
Unit IV Mathematical Expectation : Addition and Multiplication Theorem - covariance Expectation and variance of a linear combination of random variables - Expectation of continuous random variable - Moment generating function and its properties - uniqueness Theorem on Characteristic function- Chebyshev's inequality - weak law and bernoulie's law of large numbers.

Unit V Theoretical Discrete Distribution :Bernoulli Distribution and its moments - Binomial Distribution - moments, mean deviation about mean, mode, M.G.F and Characteristic function recurrence relation for the moments - additive property of independent Poission variants recurrence formula for the probability of the Binomial Distribution and Poission Distribution.

Text Book :

S.C Gupta and V.K. Kapoor , "Elements of Mathematical Statistics ",Sultan Chand Publishers, New Delhi. 2009.

Unit I - Chapter 3.
Unit II - Chapter 4.
Unit III- Chapter 5.
Unit IV- Chapter 6.
Unit V - Chapter 7.

Reference Book:

P.R.Vittal, "Mathematical Statistics ", Margham Publications -2002- Reprint 2012.

Semester III

UMTE31

VECTOR CALCULUS, FOURIER SERIES AND FOURIER TRANSFORM 4 Hours / 3 Credits

Objectives

- To enhance basic skills in the areas of vector calculus, Fourier series and Fourier transforms
- Vectors and its product
- Multiple vector integration
- To study about Fourier series and their applications.

Unit I: Differentiation of Vector - Vector operator del - Grad, Div and Curl -Directional derivative - Solenoidal, Irrotational vector -formulas involving del operator - Angle between the surfaces.

Unit II: Vector Integration - Line, Surface and volume integrals - Gauss divergence, Green's and Stoke's theorems - Verification of theses theorems.

Unit III: Fourier Series: Definition- Dirchlet's conditions- Fourier Series of periodicity 2п and 21- Odd and even functions -Root mean square value of a function - Parseval's theorem.

Unit IV: Half range series - Parseval's theorem - Harmonic analysis- Complex form of Fourier Series.

Unit V: Fourier Transform - Properties - Fourier integral theorem - convulution theorem problems.

Text Books:

1. Arumugam and Issac, "Analytical Geomentry 3D and vector calculus, Sci. Tech Publishers - 2011.

Unit I-Chapter 5.
Unit II - Chapter 6 - Sec 6.1,6.2.
2. P. Kandasamy and K.Thilagavathy, " Mathematics, Vol IV, S.Chand and Company Ltd.,- 2004.

Unit III - Chapter I .
Unit IV - Chapter I.
Unit V - Chapter IV.

Reference Book:

T.K.Manickavasagam pillay and Narayanan , "Vector Algebra and Analysis" Viswanathan printers and publishers Pvt Ltd.,

Semester III

UMTN31

RESOURCE MANAGEMENT TECHNIQUES

2 Hours / 2 Credits

Objectives

- To impart the basic concepts and applications of linear programming.
- The leaner will analyze the different aspects of transportation problems, assignment problems and also sequencing problem.
- The leaner will develop, organize, evaluate short, long term processes and solve problems
- The leaner will acquire the knowledge of basics in game theory

Unit I: Definition-Mathematical formation of the Linear Programming Problem- Basic Solution- Degenerate Solution- Basic Feasible Solution of the Linear Programming Problem.

Unit II: Transportation Problem: Definition-Mathematical form of L.P.P-Table-Find Intial Basic Feasible Solution - North West Corner Rule -Row Minima-Colum Minima- Least Cost Method- Vogel's Approximations Method(VAM) - Un balanced Transportation problem- Only upto Intial Basic Feasible Solution.

Unit III: Assignment Problem: Definition-Mathematical formulation of the problemHungarian Algorithm - Simple Problem .

Unit IV: Sequencing Problem: Definition-Problem of Sequencing- Basic Terms Used in Sequencing- Processing n jobs \& Two machine- Processing n jobs Through two Machines.

Unit V: Game Theory: Definition- Two-Person Zero-Sum Games- Some basic terms- The Maximin-Minimax Principle- Game without Saddle point- Mixed Strategies - Graphic Solution of $2 \times \mathrm{n}$ and $\mathrm{m} \times 2$ games.

Text Book:

Kanti Swarup, P.K .Gupta,Man Mohan"Operations Research", Sultanchand and sons, Edition - 2017.

Unit I - Chapter 2 and 4.
Unit II - Chapter 10.
Unit III - Chapter 11.
Unit IV - Chapter 12.
Unit V - Chapter 17.

Reference Book :

P.R.Vittal and V.Malini, " Operations Research " Margham Publishers - 2002.

Semester III

Objectives

- The learner understand basic knowledge about natural science.
- The leaner will acquire the knowledge of the celestial objects and origin of those objects and phenomena and their evolution
- The learner will acquire basic knowledge about morning , evening stars , circumpolar stars
- The learner will acquire basic knowledge about the diurnal motion of sun and stars.

Unit I: Spherical trigonometry:Sphere - Great circles and small circles- Axis and poles of circle - distance between two points on a sphere-angle between two circles-secondaries-angular radius or spherical radius - spherical figures -spherical triangles - polar triangle -theorems - Relation between spherical triangles and its polar triangle- Some properties of Spherical trianglesprincipal of duality-colunar and anti podal triangles -Relation between sides and angles of a spherical triangle- Cosine formuls- cotangent formula-supplemental cosine formula.

Unit II: Functions of half an angel- functions of half a side - Delambre's analogies -Napier's analogies- right angled spherical triangle -Napier's rules- Sphereical Coordinates - relation between the Sphereical and rectangular coordinates - general proof of the cosine formula formula in plane trigonometry -Important note.

Unit III: Astronomy-celestial sphere - Diurnal motion, celestial axis and equator -celestial Horizon - Zenith and Nadir -celestial Meridan - Cardinal points - Northern and souther hemispheres - Eastern and southern hemispheres - Eastern and western hemispheres - visible and invisible hemispheres - Declination circles -verticals - parallacte angle -Rising and setting - transit or culmination- Due east and due west - due south and due north - annual motion of the sun, ecliptic , obliquity-first point of Aries and first point of libra - equinozes and solstices coloures - Celestial Coordinates: Horizontal system - equatorial system- meridian system ecliptic system - to represent the different systems of coordinates in the same figure conversion of coordinates -relation between right ascension and longitude of the sun- to trace the changes in the coordinates of the sun in the course of a year - the longitude of the sun on any day. (with worked examples)

Unit IV: Sideral time -west hour angle of a body expressed in time units - theorem- latitude of a place - theorem- to determine - tee R.A. and Declination of a body- to find the hour angle of a body at rising or setting - to find the duration of day time -to trace the changes in the azimuth of a star in the course of a day. (with worked examples)

Unit V: Morning and evening stars -circumploar stars - to find the condition that a star is circumpolar. (with worked examples)

Text Book:

S.Kumaravelu and Susheela Kumaravelu, "Astronomy for degree classes, Rainbow Printers, Nagarcoil, Reprint 2000.(Copies can be had of S.Kumaravelu, Muruga Bhavanam, Chidambaranager, Nagercoil)

Unit I - Chapter I: Subsection 1-24
Unit II - Chapter I: Subsection 25-38
Unit III - Chapter II: Subsections: 39-68
Unit IV - Chapter II: Subsection 70-79
Unit V - Chapter II: Subsection 80-86

Reference Book:
Prophet Muhammad, "Astronomy: Supplemental Guide", Core Knowledge Foundation, 2013

Semester IV

Objectives

- Proficient in Newton's laws of motion and projectiles
- Proficient in collision of elastic bodies
- Proficient in motion under action of central forces
- To defines the path of orbiting body around central body relative to, without specifying position as a function of time.

Unit I: Newton Laws of Motion and Applications.

Unit II: Projectiles - Equation of path range etc. -Range of a particle projected on an inclined plan etc.

Unit III: Impulses - Impact in a fixed plane - Direct and Oblique impact.

Unit IV: Simple harmonic motion - Equation of motion - composition of two simple harmonic motions - simple pendulum.

Unit V: Central Orbits - components velocity and accelerations along and perpendicular to the radius vector - differential equations of a central orbit pedal equation.

Text Book:

M.K.Venkatraman, 'Dynamics', $9^{\text {th }}$ edn, Agasthiar Publications, Trichy,1997.

Unit I - Chapter 4 - Sec. 4.1 to 4.37
Unit II - Chapter 6 - Sec. 6.1 to 6.17.
Unit III - Chapter 8 - Sec. 8.1 to 8.10.
Unit IV - Chapter $10-\mathrm{Sec}$. 10.1 to 10.16.
Unit V - Chapter 11 - Sec. 11.1 to 11.15 .

Reference Books:

1.A.V.Dharmapadam, 'Dynamics',S.Viswanathan Printers and Publisher Pvt.,Ltd.,Chennai 1993.
2. K.Viswanntham Naik and M.S.Kasi, ‘Dynamics', Emerald Publishers, 1992 .
3. Narayanamurthy and N.Nagarathnam , 'Dynamics', National Publishers, New Delhi, 1991..

Semester IV

Objectives

- To enhance basic skills in the areas of sequences and series.
- Types of sets, inequalities and sequences
- Behavior of sequences and its subsequences
- Infinite series and various tests for finding rearrangements its convergence

Unit I : Sequences: Definition - Bounded sequences - Monotonic sequences - Convergent sequences - Divergent and Oscillating sequences - Solved problems - Behaviour of monotonic sequences.

Unit II : Some theorems on Limits - subsequences - Limit points - Cauchy sequences - the upper and Lower limits of a sequence - solved problems.

Unit III : Series of Positive terms : Definition - Cauchy's general Principle of convergence comparison test - Kummer's Test - D' Alembert's ratio test - Raabe's Test - De morgan and Bertrand's test, Gauss's test.

Unit IV : Cauchy's root test - Cauchy's Condensation test - Integral test - Series of arbitrary terms: Alternating series - Leibnitz's test - Absolute convergence - Test for Convergence of Series of Arbitrary terms - Dirichlet's test - Abel's test.

Unit V : Rearrangement of series: Definition - Riemann's theorem - multiplication of series : Definition - Abel's theorem - Merten's theorem - Power series.

Text Book:

Arumugam and Issac, "Sequences and series", New Gamma publishing House, December 2015. Brouch(refeold writes Algebra,)

Unit I - Chapter 3-3.1 to 3.7.

Unit II - Chapter 3-3.8 to 3.12.
Unit III - Chapter 4-4.1 to 4.3.
Unit IV -Chapter 4-4.4 and 4.5, Chapter 5-5.1 to 5.3.
Unit V - Chapter 5-5.4 to 5.6.

Reference Book:

S.C.Malik ,Savita Arora.,"Mathematical Analysis", New Age International Private Limited.

Semester IV

UMTA42 ANCILLARY MATHEMATICAL STATISTICS - II $\mathbf{3}$ Hours / 4 Credits

Objectives

- To impart skills in various applications of statistical methods.
- Analyze the given data by using statistical methods.
- Construct and evaluate hypothesis tests.
- Apply sampling techniques to real life situations.

Unit I:Theoretical Continuous Distributions - Rectangular Distribution - Normal Distribution as Limiting form of Binomial Distribution - Chief Characteristic of Normal Distribution and Normal Probability curve - Mode, Median, M.G.F, Moments, Mean Deviation form the Mean of Normal Distribution - A linear combinations of Independent Normal variants - Points of Inflexion of Normal Curve - Area property- Fitting of Normal distribution.

Unit II : Curve fitting - Fitting of a straight Line, Second degree Parabola Polynomial of $\mathrm{k}^{\text {th }}$ degree change of Origin - fitting of power curve $y=a x^{b}$ fitting of Exponential curves $y=a b^{x}$, $y=a e^{b x}$ - Theory of attributes - Notations - Dichotomy Classes and Class frequencies - order relation between class frequencies - class symbles as operators - Condition, for consistency of data - Independence of Attributes and its criterion - association of Attributes - Yules - Coefficient of association.

Unit III :Correlation and regression bivariate Distribution - Correlation - Scatter diagram- Karl Pearson Co-efficient for correlation and Limits - calculation of Correlation Co-efficient for a bivariate frequency Distrubution- Rank Correlation- Repeated Ranks - Regression - Line of Regression - Regression Co-efficient and Its Properties - Angles between two lines of regression.

Unit IV: Sampling and Large sample test - Introduction- Types of sampling - parameters and Statistics - Test of Significance - Null - Hypotheses - test of Significance for single mean, Differnce of Means - Difference of standard Deviation, Exact Sampling Distribution - Chisquare variate - Derivation- M.G.F.Mode, Skewness of Chisquare Distribution - additive property of Chi-square variates - Application Chi-square Distribution - Chi-square test for population Varaince and Goodness of Fit - Independence of Attributes.

Unit V: Exact Sampling distribution $-\mathrm{t}, \mathrm{f}$ and z distribution, definitions and Applications to t, f and z distribution - test for single mean, differencesw of mean, Observed Correlation Coefficient - f test for quality of population on variance .

Text book :

S.C.Gupta\&V.K.Kapoor ,"Elements of Mathematical Staistics", course of Madras: Madurai University, Sultan Chand Publishers, New Delhi 2009.

Unit I - Chapter 8 -8.1 to 8.2.11,8.2.14.
Unit II -Chapter 9-9.1 to 9.3 and chapter 11
Unit III -Chapter 10.
Unit IV - Chapter 12.
Unit V -Chapter 13 and 14.
Reference Books :

1. Arumugam and Thangpandi "Probability and Statistics", New Gamma Publishing House, 2006.
2. P.R. Vittal, "Mathematical Statistics", Margham Publications, 2012.

Semester IV

UMTE42

DISCRETE MATHEMATICS
3 Hours / 3 Credits

Objectives

- To study of and, or and nor logics by truth tables.
- To study of normal forms.
- Analysis Free and Bound variable formulas.
- Understand Types of Grammer, function of Pushdown automata.

Unit I: Mathematical Logic Statement and Notation - Connection - Negation Conjunction Disjunction - Statement Formulas and Truth Tables - Logical Capabilities of Programming Languages - Conditional and Bi Conditional - Well Formed Formula - Tautologies Equivalence of Formula - Duality Law Tautological Implication.
Unit II: Normal Forms: Disjunctive Normal Forms - Conjunctive Normal Forms - Principal Disjunctive Normal Forms - Principal Conjunctive Norms.
Unit III: Theory of Inference - Truth Table Technique - Rules of Inference - Inconsistent Premises - Indirect Method of Proof - Predicate calculus- Free and Bound Variables - Valid Formulas and Equivalences - Inference Theory of Predicate Calculus.
Unit IV: Grammar : Definition - Types of Grammar - Phrase Structure Grammar - Context Sensitive Grammar - Context Free Grammar - Regular Grammar - Languages Generated by these Grammars.
Unit V: Automata -Definition - Deterministic Automation - Non-Deterministic Automates Conversion of NDFSA to DFSA- Pushdown automata.

Text Book:

1. J.P.Tremblay, R. Manohar - "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw - Hill Edition 1997. (Ref) Murukesan from Kovai Unit I- Chapter :1-1-1,1-2:1-2.1 to 1-2.11.
Unit II-Chapter :1-3.1 to 1-3.4
Unit III- Chapter: 1-4.1to 1-4.3 .1-5 to1-5.4,1-6:1-6.1-1-6.4
2. Dr.Rani Siromoney, Formal Languages and Automata, The Chiristian Literature Society, Revised Edition 1979.

Unit IV-Chapter2 : 2.1 to 2.6
Unit V-Chapter 5: 5.1 and Chapter 6

Reference Books:

1. B.S.Vatssa, "Discrete Mathematics",WISHWA PRAKASHAN,1993.
2. V.Sundaresan,K.S.Ganapathy Subramanian, K.Ganesan, "Discrete Mathematics", A.Rd.Publications, 1998.
3. T.Veerarajan, "Discrete Mathematics", McGraw Hill Education (India)Pvt.Ltd,New Delhi, 2014.

Semester IV

UMTN42

Objectives

- To impart skills in numerical and quantitative techniques.
- able to critically evaluate various real life situations by resorting to Analysis of key issues and factors.
- able to demonstrate various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions.

Unit I : Numbers - HCF - LCM - Problems on numbers. (Chapters 1, $2 \& 7$)
Unit II : Decimal Fractions and Simplification. (Chapter 3 \& 4)

Unit III : Surds and Indices - Percentage - Profit and Loss. (Chapters 9, 10 \& 11)
Unit IV: Ratio and Proportion - Partnership - Allegation or Mixture. (Chapters 12, 13 \& 20)
Unit V:Average - Problems on Age. (Chapters 6 \& 8)
Text Book:
R.S.Aggarwal, Scope and treatment as in "Quantitative Aptitude", S.Chand \& Company Ltd., Ram Nagar, New Delhi -2007.

Semester IV

Objectives

- Learnre able to knowledge about the Earth's pole, it is counterclockwise rotation.
- Knowledge of equation of Time, seasons from earth rotation
- Calculation to prepar calender and conservation of Time.
- It applies mathematics, physics, and chemistry.

Unit I:The zones of earth -to trace the variations in the durations of day and night during the year at different stations -to find the duration of perpetual day in a place of latitude - to find analytically the conditions for perpetual day and night -Terrestrial latitudes and longitudes Phenomena depending on the change of latitudes and longitudes-Date line - Shape of Earth Geographical and geocentric latitudes of a place - to find the reduction of latitude -Ellipicity - to prove that reduction of latitude is $\mathrm{c} \sin 2 \phi$ - to find the geocentric distance of a station of geographical latitude ϕ - to find the radius of curvature of the earth at a station of geographical latitude ϕ - Geographical and Nautical mile.

Unit II: Radius of earth - Another method to determine the radius of earth -arguments in favour of earth's rotation- experimental proofs for the rotation of earthDip of Horizon -to find a expression for Dip.

Unit III: To find the distance between two mountains whose tops are just visible from each other - Effects of Dip- to find the acceleration in the time of rising of a star due to dip-Twilight -tofind the duration of twilight- to find the condition that twilight may last throughout night -to find the number of consecutive nights having twilight throughout night - to find the duration of twilight when it is shortest- civil, nautical and astronomical twilights.

Unit IV: Equation of time: Introduction- Dynamical mean sun- equation of time - analytical expression for the equation of time -effect of equation of time on the lengths of morning and evening-to prove that the equation of time vanishes four times a year -seasons -causes of seasons.

Unit V: Calendar:Different kinds of year -civil year, Julian calendar - Gregorian calendar Julian date-Besselian year -Conversion of Time: Relation between sidereal and mean times -to convert mean solar time into sidereal time - to convert sidereal time into mean solar time - to find the sidereal time at a given instant of mean solar time on a given date at Greenwich - to find the mean time corresponding to a given instant of sidereal time at Greenwich - the difference between local times - to find the sidereal time from local mean time for a given place- to find the
mean time from the sidereal time for a given place- given the right ascensions of a star and the mean sun, to find the mean time of transit of the star.
Text Book:
S.Kumaravelu and Susheela Kumaravelu , Astronomy for degree classes, Rainbow Printers, Nagarcoil,2005.

Unit I : Chapter III: Subsection 87-101
Unit II : Chapter III: Subsection 102-107.
Unit III : Chapter III: Subsection 108-116
Unit IV : Chapter VII: Subsection 166-170 and 172-174
Unit V : Chapter VII: Subsection 175-184 and 186-189.

Reference Book:

Prophet Muhammad, "Astronomy: Supplemental Guide", Core Knowledge Foundation, 2013

Semester V

UMTT51
ABSTRACT ALGEBRA

Objectives

- To provide some knowledge about various algebraic structures.
- recognize the basic properties of groups and subgroups.
- understand the types of homomorphism and use them to classify groups.
- apply the theorems to study the structure of groups.
- recognize the basic properties of rings, fields and integral domains.
- useing the algebraic methods for solving problems.

Unit I: Groups - Definition and Examples - Elementary Properties of a Group Quaternion group Groups of symmetries - Order of an Element.

Unit II: Subgroups - Homomorphism- Cayley's Theorem - Group of Permutation - Cyclic Groups- Automorphism .

Unit III:Cosets and Lagranges Theorem - Normal Subgroups and Quotient GroupsFundamental theorem of homomorphism.

Unit IV: Rings-Definitions and Examples - Elementary properties of rings - division rings and fields Ordered integral domain -subring and sub field-prime fields.

Unit V: Homomorphism of rings and their types- Ideals - Quotient structure and Isomorphism theorems- Maximal and Prime Ideals-Field of quotient of an integral domain.

Text Book:

T.K.Manickavasagampillai and Narayanan , "Modern Algebra"volume I \& II Viswanathan printers and publishers Pvt Ltd., Edition 1982.
Unit I- Chapter 6-6.1 to 6.2
Unit III- Chapter 6-6.8 to 6.10
Unit V- Chapter 7-7.5 to 7.9

Reference Books:

1. Arumugam S and Thangapandi Issac "" Modern Algebra", SCITECH Publications, Chennai, Edition 2003.
2. A.R.Vasishtha, "Modern Algebra", Krishna Prakashan Mandir, Meerut, 1994-95.

Objectives

- Understand the basic concepts of sets
- To provide knowledge about Metric Spaces
- The learner will acquire knowledge of open/closed sets and its properties
- The learner will acquire knowledge of Continuity, Connetedness, and Compactness and apply theorem

Unit I:. Countable and Uncountable sets- Inequalities of Holder and Minkowski- Metric spacesDefinition and Examples-Bounded set in a metric spaces- Open balls in a metric spaces- open sets-subspaces- Interier of a set.

Unit II: Closed sets - Closure- Limit point- Dense sets- Complete metric space- Introduction-Completeness-Baire's Category theorem.

Unit III: Continuity: Introduction- Continuity-Homeomorphism-Uniform continuity -Dis continuous function on R.

Unit IV: Connetedness: Introduction- Definition and Examples -Connected subset of R connectedness and continuity.

Unit V: Compactness: Introduction- compact space -compact subsetsof R-equivalent characterisation for compactness -Compactness and continuity.

Text Book:

Arumugam S and Thangapandi Issac ," Modern Analysis", New gamma Publishing house , Edition 2013.

Unit I - Chapter $1 \& 2-1.2$ to 2.6)
Unit II - Chapter 2 \& 3-2.7 to 3.2)
Unit III - Chapter 4-4.1 to 4.4)
Unit IV -Chapter 5
Unit V - Chapter 6

Reference Books:

1. Walter Rudin, "Principles of Mathematical Analysis", McGraw-Hill International. Editions ($\left.3^{\text {rd }}\right)-1976$.
2. V.Karunakaran, "Real Analysis", Pearson Publications,Edition-2012.
3. Appostol, "Mathematical Analysis", Narosa Publishing House-Second Edition-2002.

Semester V

Objectives

- To impart the basic concepts and applications of linear programming.
- The leaner will formulate a linear programming problem and solve them graphically and simplex method
- The leaner will be able to understand the concepts of duality programming
- The leaner will analyze the different aspects of transportation problems and also assignment problems
- Students will be able to identify the basic analysis of various inventory models.
- The leaner will develop, organize, evaluate short, long term processes and solve problems

Unit I: Linear Programming : Mathematical formulation of linear programming problemGraphical solution- Simplex method - Use of Artificial Variables: - Big M Method - Two Phase Method .

Unit II: Degeneracy in Linear Programming - Duality - Duality Theorem - Duality and Simplex Method - Dual Simplex Method .

Unit III: Transportation Problem: Mathematical formulation of the problem - Finding Initial Basic Feasible Solution using North - West Corner Rule - Matrix Minima Method - Vogel's Approximation Method - Optimum solution - MODI method .

Unit IV: Assignment Problem: Mathematical formulation of Assignment ProblemAssignment Algorithm-Minimazation case Routing problem.

Unit V: Inventory Control: Types of Inventories - The inventory decisions economic order quantity - Deterministic Inventory Problems: EOQ Problem with no shortages - EOQ Problem with price break - EOQ Problem with two price break - EOQ Problem with n price break.

Text Book:

Kantiswarup, P.K.Gupta, Manmohan"Operations Research", Sultanchand and sons , Edition 2000.

Unit I- Chapter 2,3, and 4-4.1 to 4.5
Unit II- Chapter 5-5.1 to 5.7
Unit III- Chapter 10
Unit IV- Chapter 11
UnitV- Chapter 19-19.1 to 19.10,19.12

Reference Books:

1. J.K.Sharma, "Operations Research",Macmillan India Ltd. 1997.
2. Prem Kumar Gupta, D.S. Hijra, "Operations Research",S. Chand \& Company Ltd,2002.
3. P.R.Vittal, "Operations Research,Margham Publicatioons, 2002.

Semester V

Objectives

- The learner will acquire knowledge of basic concepts of number theory
- The learner will become proficient in various types of functions
- The learner will be know the primitive roots
- apply the theorems to study the numbers.

Unit I: Well - Ordering Principle(WOP)- Principle of Finite Induction- The Division Algorithm - Basis Representation Theorem- Binomial Coefficients- Divisibility Theory : Greatest Common Divisor-Least common Multiple- Linear Diophantine Equations- Fundamental Theorem of Arithmetic - Some Question Regarding Primes.

Unit II: Congruences: Definition - Residue System - Test of Divisibility - Linear congruences Solving Polynomial congruences - An Application of Congruences to Diophatine Equations Fermat's Little theorem -Euler's Generalisation of $F L T_{1}$.

Unit III: Wilson's Theorem- Euler's Φ-Function- Arithmetic Functions: The Function τ and $\sigma-$ The Möbius Function- Multiplicative Arithemetic Functions- Inversion Formula- Greastest Integer Function.
Unit IV: Primitive roots : Exponents - Primitive roots Modulo a Prime - Determination of Integers having Primitive roots - Indices - Euler's Criterion - Legendre Symbol and its Properties - Gauss Lemma.
Unit V: Quadratic Reciprocity Law and its applications - Jaccobi Symbol - Perfect Numbers Mersenne Primes-Fermat Numbers-Phythagorean Triples-Fermat's Last Theorem.

Text Book:

S.B.Malik ," Basic Number Theory",Second Revised Edition, Vikas Publishing House PVT LTD, 2009

Unit I - Chapter : 1\&2
Unit II - Chapter Chapter : 3, Chapter : 4-4.1,4.2
Unit III-Chapter : 4-4.3, 4.4\& Chapter : 5
Unit IV - Chapter :6,7-7.1 to 7.3
Unit V - Chapter : 7-7.4 to 7.6, Chapter : 8

Reference Book:

1. Ivan Niven and Herbert S Zuckerman, "An Introduction to the theory of Numbers", $3{ }^{\text {rd }}$ Edition, Wiley Eastern Ltd., New Delhi, 2000.

Semester V

UMTT55

NUMERICAL METHODS
5 Hours / 4 Credits

Objectives

- To develop efficient algorithms for solving problems in Science, Engineering and Technology.
- The leaner will analyze the different aspects of numerical solution of algebraic and transcendental equations.
- \quad Students will be able to identify the basic concept of numerical differentiation and integration, principle of least squares.
- The learner will become knowledgeable in solving solution to simultaneous linearequations.

Unit I: Solution of Algebraic and Transcendental Equations:Bisection Method - Iteration
Method -Condition for Convergence-Regula Falsi Method-Newton's Method.

Unit II: Solutions of simultaneous Linear Algebraic Equations: Gauss Elimination Method Gauss Jordan Method -Method of Factorization-Gauss Jacobi - Gauss Siedel Method.

Unit III: Finite Differences: First and Higher Order Differences -Forward and Backward Differences -Properties of Operator - Differences of a Polynomial - Factorial PolynomialsRelation between the Operators Δ, E and D- Summation of the series.

Unit IV: Interpolation- Gregory Newton Forward and Backward Formula - Gauss Forward and Backward Formula- Stirlings Formula- Interpolation with Unequal Intervals: Divided differences- Newton's Interpolation Formula-Lagrange's Interpolation Inverse Interpolation.

Unit V: Numerical Differentiation and Integration: Newtons Forward and Backward Difference Formula - Stirlings Formule to Compute Derivatives-Trapezoidal rule- Simpsons $1 / 3^{\text {rd }}$ and $3 / 8^{\text {th }}$ Text Book:
P.Kandasamy , K.Thilagavathi and K. Gunavathi, "Numerical Methods", S.Chand and Company Ltd, New Delhi 2013.

```
Unit I - Chapter 3-3.1 to 3.4
Unit II - Chapter 4-4.1 ,4.2,4.4,4.7 to 4.9
Unit III - Chapter 5- 5.1 to5.4,5.7
Unit IV -Chapter 6, 7-7.1 to 7.5 & 8
Unit V - Chapter }
```


Reference Books:

1. Arumuga, Issac, Somasundaram,"Numerical Analysis", New Gamma Publishing House, Palayam Kottai 2003.
2. G. Balaji, "Numerical Methods", G.Balaji Publishers, Chennai 2007.

Semester V

UMTE53

PROGRAMMING IN C

3 Hours / 3 Credits

Objectives

- To develop programming skills in C and its object oriented concepts.
- The learner will become proficient in object oriented programming concept and proficient in C tokens
- Proficient in C operators, class declaration and definition and its objects
- Proficient in conditional statements and loop concept

Unit I: Overview of C :Importance of C - Sample C Programs - Basic structure of C programProgramming style - Executing a C Program.Constants, Variables and Data types : - Character set - C tokens - Keywords and Identifiers - Constants - Variables - Data types - Declaration of Variables - Assigning Values to Variables - Defining Symbolic Constants.
Unit II: Operators and Expression : Arithmetic of Operators - Relational Operators - Logical Operators - Assignment Operators- Increment and decrement Operators - Conditional Operator - Bitwise Operators- Special Operators - Arithmetic Expressions - Evaluation of Expressions Precedence of Arithmetic Operators - Some Computational Problems - Type Conversions in Expressions - Operator Precedence and Associativity - Mathematical Functions.
Unit III: Managing Input and Output Operations: Reading a Character - Writing a Character Formatted Input - Formatted Output.
Unit IV: Decision Making and Branching : Decision making with IF statement - Simple IF statement - The IF ELSE statement - Nesting of IF ... ELSE statements - The ELSE IF ladder - The switch statement - The ? : operator- The GOTO statement.

Unit V: Decision Making and Looping : The WHILE statement - The DO statement - The FOR statement - Jumps in loops.

Text Book:

E.Balagurusamy, "Programming in ANSI C", $4^{\text {th }}$ Edition, Tata McGraw- Hill Publishing Company Ltd., New Delhi, Ninth Reprint 2009.

Unit I - Chapter 1\&2 Unit II - Chapter 3
Unit III -. Chapter 4
UnitIV-Chapter
5
Unit V - Chapter 6

Reference Books:

1. Kris A.Jamsa, " Programming in C", Gazlgotia Publication, New Delhi 1990.
2. V.Rajaraman, "Computer Programming in C", Prentice Hall of India, New Delhi, 1994.
3. Stephen .G Kochan, " Programming in C", CBS Publishers, New Delhi, 1991.

Semester V

UMTS53 MATHEMATICAL APTITUDE
 2 Hours / 2 Credits
 Objectives

- To impart skills in numerical and quantitative techniques.
- able to critically evaluate various real life situations by resorting to Analysis of key issues and factors.
- proficient in applying graphs, charts and probability techniques on various problems.
- proficient in the problems on relations, coding and decoding.
- able to demonstrate various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions.
- able to do fast calculation.

Unit I: Problems on Ages-Time and Work-Time and Distance- Problems on Trains

Unit II: Permutation and Combination-Odd Man out Series

Unit III: Coding-Decoding- puzzle test .

Unit IV: Direction sense test -Logical venn diagrams.

Unit V: Logic- Statement - Assumptions-Arguments- Statements-Conclusion-Deriving conclusion from passages.

Text Books:

1. R.S.Agarwal, "Quantitative Aptitute For Competitive exams" 7 th revised edition
2. R.S.Agarwal,"A Modern Approach to Verbal and Non-verbel Reasoning " 3 th revised edition
Unit I- TB1: Chapter 8,15,17,\&18
Unit II- TB1:Chapter 30\&35
Unit III- TB2:Part I-Section I-Chapter 4\&6
Unit IV- TB2:Part I-Section I-Chapter 7\&9
Unit V- TB2:Part I-Section I-Chapter 1,2,3,5\&6

Semester VI

LINEAR ALGEBRA
5 Hours / 4 Credits

Objectives

- To introduce the fundamentals of Vector spaces.
- recognize the basic properties of vector spaces
- understand the concepts of linear algebra in geometric point of view
- visualize linear transformations as a matrix form
- formulate the importance and applications of linear algebra in many branches of mathematics

Unit I: Vector spaces: Definition and examples - Properties of vector space-Linear combination-linear span - linear dependence and independence .

Unit II: Basis and Dimension - Quotient space - Isomorphism of vector spaces -Direct sums.

Unit III: Matrix of a linear transformation - Rank and nullity of a Linear transformationcharacteristic equation of a matrix- Matrix Polynomial - Elementary matrix and transformations.

Unit IV: Row rank ,column rank and rank of a matrix-Row space and column space - linear equation -consistency of equation - non homogeneous linear system.

Unit V: Similar and Congruvant matrices-Inner product spaces : Definition and examples Orthogonality -Orthogonalization - Orthogonal complement

Text Book:

T.K.Manickavasagampillai and Narayanan , "Modern Algebra"volume II Viswanathan printers and publishers Pvt Ltd., Edition 1982.

Unit I- Chapter 8-8.1 to 8.5
Unit II- Chapter 8-8.6 to 8.10
Unit III- Chapter $8-8.14$ to 8.18
Unit IV- Chapter 8-8.20,8.21
Unit V-Chapter 8-8.22 to 8.24

Reference Books:

1. Arumugam S and Thangapandi Issac ," Modern Algebra", SCITECH Publications, Chennai, Edition 2003.
2. A.R.Vasishtha, "Modern Algebra", Krishna Prakashan Mandir, Meerut, 1994 95

Semester VI

Objectives

- To introduce the concepts of complex numbers and analytic functions.
- The learner will acquire basic concepts of analytic function and its properties
- The learner will acquire basic knowledge about conformal and bilinear transformation
- The learner will gain knowledge of integration of complex valued function
- The learner will become proficient in series of analytic function
- The learner will acquire skills of finding integral values of complex function using residues

Unit I: Analytic functions - Cauchy-Riemann equations - Sufficient conditions - Harmonic functions - Cauchy- Riemann equations in polar co-ordinates - Milne Thomson"s method. Conformal Mapping- Bilinear Transformation.

Unit II : Complex integration - Cauchy"s integral theorem - Cauchy"s integral formula Derivatives of analytic functions - Morera"s theorem - Cauchy"s inequality - Liouville"s theorem - Fundamental theorem of algebra
Unit III :Expansion of functions in power series- Taylor's theorem - Taylor's series and Laurent ${ }^{\text {cs }}$ s series

Unit IV :Zero s of an analytic function-singular points - essential singularity - study of the function for the infinite value of Z- Argument Principle - Rouche"s theorem - Fundamental theorem of algebra
Unit V : Calculus of Residues - Introduction- Residues - Cauchy's Residue Theorem evaluation of definite integrals .

Text Book:

Arumugam S and Thangapandi Issac ," Complex Analysis", Scitech Publication pvt ltd, Edition 2014.

Unit I - Chapter 2\&3
Unit II - Chapter 6
Unit III - Chapter 7 -7.0 to 7.2
Unit IV - Chapter 7 - 7.3 , 7.4
Unit V - Chapter 8

Reference Books:

1.Santhinarayan, "Theory of functions of Complex Variable', S.Chand and Company, Meerut,1995.
2. T.K.M.Pillay, Dr.S.P.Rajagopalan \& Dr.R.S. Sattanathan,"Complex Analusis", S. Viswanathan (Printers \& Publisers),Pvt.Ltd. Revised Edition 2007 Reprint 2013.
3. Lars V Ahlfors "Complex Analysis" McGraw - Hill Kogakusha, Ltd. $3^{\text {rd }}$ Edition, 1999.

Semester VI

UMTT63
OPERATIONS RESEARCH - II
5 Hours / 4 Credits

Objectives

- To impart mathematical modeling skills through operations research techniques.
- The learner will become proficient in sequence modeling and processes in mathematics and engineering.
- The leaner will acquire the knowledge of Simulation
- The leaner will acquire the knowledge of basics in game theory and replacement problems
- The learner will become to understand the role and application of PERT/CPM for project scheduling.

Unit I: Sequencing models and related problems: Sequencing Problems- assumption in Sequencing Problems - processing n jobs through one machine - processing n jobs through two machines - processing n jobs through three machines - processing 2 jobs through m machines processing n jobs through m machines - solution of complicated Sequencing Problemsproblems related to sequencing(routing problem in networks) - minimal path problem(shortest acyclic route models).

Unit II: Simulation: Introduction-when to use Simulation?- what is Simulation?- advantage of the Simulation technique- limitatioin of the Simulation- application of Simulation- Monte Carlo Simulation - generation of random numbers - Simulation languages.

Unit III: Theory of Games: Two person zero sum game-The maximin and minimax principleGames without saddle points-Mixed strategies-Dominance property-solution of 2×2 rectangle game- Graphical Method.

Unit IV: Replacement Problem: Replace problem and System Reliability - Replacement of Equipment that Deteriorates Gradually- Replacement of Equipmant the Fails Suddently.
Unit V: Network Seduling by PERT/CPM: Introduction network and Basic Components- Rules of Construction - Critical Path Analysis - Probability Considerations in PERT - Distinction between PERT andCPM.

Text Book:

Kantiswarup, Gupta, P.K.Manmohan, "Operations Research", Sultanchand and sons Edition 2002 ,Reprint 2017.

Unit I - Chapter 12 Unit III - Chapter 17

Unit II - Chapter 22
Unit IV - Chapter 18
Unit V - Chapter 25

Reference Books:

1. P.K.Gupta and D.Shira, OPERATIONS RESEARCH (S.Chand and Company Ltd New Delhi-.1992, Reprint 1994.
2. Taha H.A. ,OPERATIONS RESEARCH , "An introduction Prennce Hall of India Private Ltd $1^{\text {st }}$ Edition New Delhi (2008).

Semester VI

GRAPH THEORY

5 Hours / 4 Credits

Objectives

- To acquire knowledge of different types of graphs.
- To understand different Models of a graph
- To understand how to solve different real life problems
- To understand many techniques to solve a particular problem
- To understand directed graphs.

Unit I: Graphs -Pictorial representation- subgraphs-Isomorphism and degrees- Walks and connected graphs- cycles in graphs -cut -vertices and cut edges.

Unit II: Eulerian and Hamiltonian graphs:Eulerian graphs - Fleury's Algorithm - Hamiltonian Graphs - Weighted graphs.

Unit III: Bipartite Graphs: Bipartite graphs-Marriage problem-trees.Matrix representations.
Unit IV: Planar Graphs: Planer graphs- Euler's Formula -Platonic solids-Dual of a plane graphs-Characterization of planer graphs.

Unit V: Directed Graphs:Directed graphs-Connectivity in diagraphs-Strong orientation of graphs-Eulerian digraphs-Tournaments.

Text Book:

S.A.Choudum, "A first Course in Graph Theory", Macmillan india limited, 1999.

Unit I: Chapter 1
Unit II: Chapter 2
Unit III: Chapter 3-3.1 to $3.3 \& 4-4.1$
Unit IV: Chapter 5
Unit V: Chapter 7
Reference books:
1.Arumugam S and Thangapandi Issac ," Graph theory", Scitech Publication pvt ltd, Edition 2014.
2. S.A.Choudum, "A first Course in Graph Theory", Macmillan india limited,2007.

Semester VI

UMTT65
FUZZY SETS AND FUZZY NUMBERS
5 Hours / 4 Credits

Objectives

- recognize the concept of fuzzy sets and its properties.
- distinguish fuzzy sets from crisp sets.
- perform various types on fuzzy sets.
- understand the fuzzy numbers and fuzzy Lattice relations.

Unit I: From classical (crisp) sets to Fuzzy sets - Introduction - Crisp sets: An overview Fuzzy sets: Basic types - Fuzzy sets: Basic concepts.

Unit II : Fuzzy sets vs Crisp sets: Additional properties of alpha(α)-cuts - Representations of fuzzy sets- Extension Principle for fuzzy sets.

Unit III :Operations on fuzzy sets : Types of operations - Fuzzy complements- Fuzzy intersections: t - Norms- Fuzzy unions : t - Conorms - Combinations of operations.

Unit IV : Aggregation operations - Fuzzy Numbers - Linguistic Variables-Arithmetic Operations on Intervals - Arithmetic Operations on Fuzzy numbers.

Unit V : Lattice of Fuzzy numbers - Fuzzy equations- Crisp vs Fuzzy Relations - Projections and Cylindric Extension - binary Fuzzy Relations - Binary Relations on a Single Set- Fuzzy Equivalence Relations.

Text Book :

George J. Klir / Bo Yuan, Fuzzy sets and Fuzzy Logic, Theory and Applications, Prentice Hall of India Pvt. Ltd., New Delhi, 2008.

$$
\begin{array}{lc}
\text { Unit - I : } & \text { Chapter 1: Sections } 1.1-1.4 \\
\text { Unit - II : } & \text { Chapter 2: Sections 2.1-2.3 } \\
\text { Unit - III: } & \text { Chapter 3: Sections 3.1-3.5 } \\
\text { Unit - IV: } & \text { Chapter 3: Sections 3.6 and Chapter 4: Sections 4.1-4.4 } \\
\text { Unit - V : } & \text { Chapter 4: Sections } 4.6 \text { and Chapter 5: Sections 5.1-5.5 }
\end{array}
$$

Reference Book:

1. George J. Klir \& Tina A. Folger "Fuzzy Sets, Uncertainty \& Information" PHI Learning Private Limited, 2012.
2. D. Driankov, Hellendoorn \& M. Reinfrank "An Introduction to Fuzzy Control" Narosa Publishing House, Reprint 2001.

- To develop programming skills in C++ and its object oriented concepts.
- The learner will become proficient in object oriented programming concept and proficient in $C++$ tokens
- Proficient in $C++$ operators
- Proficient in $C++$ class declaration and definition and its objects
- Proficient in constructors, destructors

Unit I: Principles of Object- Oriented Programming:Software crisis - Software evolution - A look at procedure-oriented programming - Object oriented programming paradigm - Basic concept of Object -oriented programming - Benefits of OOP - Object Oriented Languages Applications of OOP.

Unit II: Tokens, Expressions and Control Structures:Introduction - Tokens - Keywords Identifiers and constants - Basic data types - User Defined data types - Derived data types Symbolic constants - Type compatibility - Declaration of variables - Dynamic initialization of variables - Reference variables - Operators in C++ - Scope resolution operator - Member Dereferencing operators - Memory management operators - Manipulators - Type cast operator Expressions and their Types - Special assignment expressions - Implicit conversions - Operator overloading - Operator precedence - Control structures.

Unit III: Functions in C++:Introduction - The main function - Function prototyping - Call by reference - Return by reference- Inline functions - Default arguments - Constant arguments Function overloading - Friend and Virtual Functions - Math Library functions. Managing Console I/O operationsIntroduction - C++ streams - C++ stream classes - Unformatted I/O operations - Formatted Console I/O operations - Managing Output with Manipulators.

Unit IV: Classes and Objects:Introduction - C Structures Revisited - Specifying a Class Defining Member Functions - A C++ program with class - Making an Outside Function Inline Nesting of Member Functions - Private Member Functions - Arrays within a class - Memory Allocation for Objects.

Unit V: Constructors and Destructors:Introduction - Constructors - Parameterized Constructors - Multiple constructors in a Class - Constructors with Default Arguments Dynamic Initializations of objects - Copy Constructor-Destructors .

Text Book:

E.Balaguruswamy, "Object - Oriented Programming with C++", Tata McGraw Hill Education Private Limited, New Delhi, Tenth Reprint 2010.

Unit I - Chapter $1 \& 2$
Unit II - Chapter 3
Unit III -Chapter 4 \& 10
Unit IV - Chapter 5-5.1 to 5.10
Unit V - Chapter 6-6.1 to 6.7,6.11`

Reference Books:

1. Ashok N.Kamthane, "Object Oriented Programming with ANSI and TURBO C++", Pearson Education (P) Ltd, 2003.
2. Bjarme Stroustrup, " The C++ Programming Language", AT \& T Labs, Murray Hill, New Jersey, 1998.

Semester VI

1. Write a Program to find the Smallest positive / Largest negative root using simple iteration method
2. Write a Program to find the Smallest positive / Negative root using Regula Falsi method.
3. Write a Program to find the Smallest positive / Negative root using Newton-Raphson's i method.
4. Write a Program to find the solution of system of equation using Gauss Jacobi method..
5. Write a Program to find the Matrix inversion using Gauss Jordan method
6. Write a Program to interpolate y for given x from the given sets of values of x and y by Newton's forward method.
7. Write a Program to find interpolate y for given xfrom the given sets of values of x and y by Newton's backward method.
8. Write a Program to find interpolate y using the Lagrange's method
9. Write a Program to derivative at initial point by Newton's forward method
10. Write a Program to integration using Trapezoidal \& simpson's method

Text Book:

1. T.VEERARAJAN\& T.RAMACHANDRAN, "Theory and Problems in Numerical Methods with Programs in C and C++", Tata McGraw Hill Publishing Company Ltd, 2004.

B.Sc. Physics / Chemistry

Semester I

ANCILLARY MATHEMATICS I
5 Hours/ 4 credits
Objectives

- The learner will become proficient in expansion and summation of function
- The learner will acquire knowledge of solving problems in matrices
- The learner will capable of solving the interpolation problems.
- The learner will gain knowledge of trigonometric functions and related problems
- The learner will become proficient in various types of hyperbolic functions

Unit I: Partial Fractions : Binomial Theorem : The General Term - Expansion of Rational Fractions - Summation of Series. Exponential Theorem: Summation of Series, The Logarithmic Series

Unit II: Theory of Equations: Fundamental Theorem of Algebra - Symmetric Function of Roots - Relation between Roots and Coefficient of Equation - Formation of Equation Diminish the Roots of the Equation - Reciprocal Equation.Newton- Raphson Method.

Unit III: Matrices: Fundamental Concepts :Special Types of Matrices -Addition and Subtraction of Matrices - Matrix Multiplication - Associated Matrices.Rank of a Matrix: Elementary Operations or Transformation. Linear Equations: Homogeneous linear Equation -Non-Homogeneous Equation Characteristic Roots and Vectors: Eigen Value and Eigen Vectors - Properties of the Eigen Vectors - Cayley-Hamilton theorem.

Unit IV: Interpolations: Newton's Forward Method - Newton's Backward Method- Lagrange's Interpolation Formula: Different form of Lagrange's Interpolation Formula.

Unit V: Trigonometry: Expansions: $\cos ^{\mathrm{n}} \theta, \sin ^{\mathrm{n}} \theta-\cos \mathrm{n} \theta$ and $\sin \mathrm{n} \theta-$ Expansion of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ.Hyperbolic Function: Relation between Hyperbolic Functions and Circular Functions - Periods of Hyperbolic Functions - Inverse Hyperbolic Functions.Logarithm of Complex Quantities.

Text Book:

1. P.Kandasamy, K.Thilagavathy,"Allied MathematicsPaper I", $1^{\text {st }}$ Semester, S. Chand Publishing. A Division of S. Chand \& Company Pvt. Ltd, Edition 2013.

Semester II
 ANCILLARY MATHEMATICS II

Objectives

- To learn methods of integration and properties and its solving related problems.
- Understand the basic concepts of first order differential equation and it applications.
- Find solutions by applying Laplace transform methods.
- Vectors and its product and its integrations.

Unit I: Methods of Integration: Standard Results - Integration by Substitution - Definite Integral - Types of Integrals (I \&II).

Unit II: Properties of Definite Integrals: Theorems, Reduction Formula: Theorems \& Problems.

Unit III: Ordinary Differential Equations: Equation of First Order and of a Degree Higher than one - Equations Solvable for P - Equations Solvable for X - Equations Solvable for Y.

Unit IV: Laplace Transformation: Definition - Laplace Transform for Standard Functions Linear Properties - First Shifting Theorem.

Unit V: Vector Analysis: Differentiation of Vectors - Gradient - Divergence and Curl Integration of Vectors.

Text Book:

1. P.Kandasamy and K.Thilagavathy. "Allied Mathematics Paper II", $2^{\text {nd }}$ Semester . S. Chand Publishing, A Division of S. Chand \& Company Pvt. Ltd, Edition 2013.
